OSHA


If you haven’t heard, Federal OSHA is proposing to reduce the airborne silica permissible exposure limit (PEL) to 50 µg/m³. It is difficult to say how much lower this new rule will be, since the current standard relies on a calculated formula to obtain the exposure limit. However, to make this easier, let’s just say it’s a 50% reduction in the PEL. This limit is the same at the NIOSH Recommended Limit and above the ACGIH Threshold Value of 25 µg/m³. Before I offer my opinion, you can state yours to OSHA here, and I’d recommend you do.

 

OSHA helps

Benefits:

  • Increase awareness by everyone (any news is good news for silica awareness)
  • Further protect employees from overexposures
  • Update the health standards. The original rule was from the 1970s.
  • New products for the industry will be created to control silica, like this.
  • Pretask planning (JSA, JHA) will become more common
  • Consultant hygienists will get more $ to: train, air monitor, etc.
  • Alternatives to sampling. This is written in the proposed rule.
    • Rather than air sampling, you can choose to “over protect” and assure employees have adequate PPE
    • This is great for short duration tasks where exposure monitoring is prohibitive (see Table 1. below from OSHA’s Fact Sheet)

OSHA lead table 1

 

Weakness:

  • Employers will spend additional money:
    • on controls for silica
    • on labor during the activities
    • on consultants to verify you’re below the PEL
  • OSHA will cite you easier
    • (my guess) is compliance officers will cite you for failure to implement controls, rather than measuring the airborne dust and finding overexposure
    • driveby citations. Look at some of my “caught on cameraoverexposures. It is easy to see why this will be easy for OSHA to cite.
  • More confusion
    • remember how you felt when you started working with leaded paint? Picture that again.
    • smaller contractors might be confused with the changes
  • I’ve heard: the airborne levels trying to be achieved are so low, they are at the laboratory detection limits. (this is a bit beyond me, honestly, but it has to do with chemistry & analytical methods)

Overall, I think lowering the limit will reduce employee overexposures to silica. The increase in awareness across the US will bring more attention to the danger. Contractor employers who are doing absolutely nothing to control silica will get caught, punished, and hopefully change. For good-contractors out there, this will make it easier to explain to your subcontractors who are a little behind. I can see many contractors using Table 1 as a guide to easily protect employees on short tasks with high silica exposures.

Your thoughts? I’d love to hear them. Here is a NY Times Article perspective.

focusfourMuch research has been done in construction safety. If you are working in construction, you have probably heard the facts over and over. The majority of construction injuries are from four main hazards, hence the “focus four hazards“. Although this site is for health issues & industrial hygiene in construction, it would be ridiculous to NOT mention these other hazards.

  • Falls,
  • Caught-in or Caught-between,
  • Struck-by &
  • Electrocution.

When talking with superintendents and safety coordinators, you can usually tell very quickly  if they have these under control. Either their subcontractors already do it right, or if/when they see an error, they immediately stop and address the inefficiency.

I saw this ladder in front of my children’s school. There was no one around and, by the look of it, there might have been someone on the roof. I should have waited, or fixed the ladder and spoken to the individual. But, I didn’t. Instead, I took a picture, put it on the internet, and now I’m telling everyone why it’s wrong.

ladder

NIOSHNIOSH has just recommended a new exposure limit (REL) for hexavalent chromium. The new limit is 0.2 ug/m3 as an 8-hour TWA. If you remember, the OSHA PEL is 2.5 ug/m3 (8-hour TWA). SO, if you’re good at math, you can see this is A LOT lower.

The reasoning for this level is they have found a lung cancer risk (get this) EVEN AT 0.2 ug/m3. They recommend bringing airborne levels below this limit for lung exposures.

As I’ve described before, exposures are not limited to just inhalation. Dermal contact is a big concern.

If you have any hexavalent chromium at your facility, or stainless steel (welding, welding2, hardfacing, etc.) you need to do more than just air sampling. You need a comprehensive program including wipe samples, medical monitoring, etc. This may not be a specific OSHA rule for your facility.  However, these exposures are something you must manage.

 

Before you can wear a respirator here’s what has to happen:

If you’re an employer and your employees wear a respirator, they are required to have a medical approval (Appendix C of OSHA respiratory standard). more details here.

The employee fills out the confidential questionnaire and then submits it to the medical provider of the employer’s choice. 95% (I made that # up) of the time, based upon the questionnaire ONLY, they give an approval to wear a respirator.

Occasionally, some employees are requested to come into the medical office to have a spirometry test performed, which tests for lung function. (a video of how it is done, cool accent included) This tests provides more information for the physician/nurse to determine if wearing a respirator will be too difficult for an employee to wear.

The cost for either test is usually pretty close to the same price… spirometry test, or not.

Here’s my suggestion:  Have every employee perform a spirometry test before wearing a respirator. This helps to guarantee they are capable of wearing a respirator. Maybe they forgot to list a risk factor, maybe they have a hidden serious lung problem, or, maybe they lied on the questionnaire so they can wear a respirator and keep their job.?

It is also beneficial for pre-employment screening, claims defense, and for a baseline in health. The specific results are usually NOT view-able by the employer, but they can be subpoenaed.

 

The new global harmonization system (GHS) is officially adopted by OSHA. Each state run program is rolling out their acceptance of the new changes. Where I live, we have until December 2013 to train employees in this new type of hazard communication.

Honestly, I’m NOT too EXCITED about it. But, I’m trying to have a good attitude. Below are some good things which may occur:

  • Raise the level of awareness of hazardous materials & their toxicity
  • Train employees (hopefully, retrain) on how to handle chemicals
  • More training = less citations. (?) OSHA’s top ten citations include #3 – hazard communication. Maybe people will actually do the training?! (my guess is that there will be more citations)
  • Consistent information worldwide.  All UN countries should have the same format. (this might take years)
  • Proprietary information will be more visible on the SDS. In the new rules, manufacturers are required to list the % of their proprietary ingredients.
  • Pictograms! They’re so cool. My favorite is the exploding person.
  • Maybe this is my favorite?!: Manufacturers will have to look again at their products and classify them according to the physical & health criteria. Nowadays with more relevant information from worldwide occupational exposure limits, it might help make employers aware of the hazards.
    • This might help OSHA enforce newer exposure limits (other than the 1978 AGCIH TLVs).

How do you plan on training your employees? If you need help, contact me here.

 

 

Looking back at my lead in construction posts, I realized I did an inadequate job of summarizing why construction activities are dangerous when working with lead.

If you work in construction, here’s are the quick points as to why you should be concerned about lead.

  • There has been A LOT of lead added to paint over the years. (it can vary 0.01% to upwards of 20%, and there’s no way to tell by looking)
  • The activities we do in construction disturb this paint (some worse than others)
  • You can be exposed to paint by inhaling it (if it is airborne), and if you happen to get it on your hands and you eat it (by transfer).
  • The real concern is kids. (your kids, the kids who might be there after you’re gone, AND, the kids unborn (lead exposure can go from mom to baby)

The solution is simple (and, of course, more complicated as you dig in):

  • test the paint to see if there’s lead in it
  • if you disturb it, follow the rules (OSHA, EPA, HUD, City, etc.)
  • train your employees (and measure the lead in their blood)
  • prevent the dust from going everywhere (containment)
  • measure the air to see if you are really screwing it up, or doing a good job.
  • finally clean up. (the area, you, your hands, the perimeter) and dispose properly

You probably already knew this. Risk changes over time.

As we start to measure, and value, loss we immediately want to minimize it. However, it’s an unobtainable goal. “Zero losses”. Really? It’s not actually possible, you know (at least in the long term).

Look at this graph of the number of deaths in the US over the years due to silica. In 1968 we had approximately 1,000 deaths. Now, in the year 2005, we are less than 200. Yet, OSHA wants us to lower the exposure limit.  (I am personally not opposed to it – but I am open to debate about it, really)

Our world is becoming smaller. But, you already knew this, too.

To give an example, look at what happened in Bangladesh on November 24/25, 2012. Meanwhile in the US, we were watching football and eating leftover turkey.  Over 100 people died due to safety concerns that turned into a fire. This country is going through what the US experienced pre-1970. Other countries have similar problems.

I suppose living in the US is a yet another reason for thanksgiving. Yes…, But.  What can you do to make the biggest impact? I don’t have the answer, but, I am open to suggestions.

 

When training people who work around asbestos I usually discuss the word “disturbance” for a LONG time. The reason is simple. If you avoid “disturbing” it, you avoid most of the health issues.

As most people are aware, asbestos is found in many types of materials. Floor tiles, popcorn ceilings, wall panels, etc.

Disturbance relates to the specific activities you perform AND the type of material the asbestos is in.

If the asbestos containing material (ACM) is non-friable, then in theory, it takes more effort to disturb the asbestos. If the material is friable, well, you need to be REALLY careful. – and in some cases, breathing can disturb it. For example, an electrician who uncovers an ancient acoustical ceiling panel and finds damaged asbestos pipe insulation laying on top of it…is probably already in trouble. He has essentially disturbed friable asbestos by merely moving the panel.

In contrast, a remodeling company installing a floating laminate hardwood over asbestos 9×9 inch tiles (without damaging them) is [probably*] NOT causing airborne releases of asbestos.

Most of the OSHA/EPA asbestos rules hinge on the matrix of the material and the activity you are performing on it. The reason is this is what makes the asbestos fiber airborne.

*the OSHA rules are very specific as to work activity, please do your due diligence.

There are some items you need to do BEFORE you wear a respirator. If you are using it on a voluntary basis, go here.

  1. obtain medical approvalfor employees to wear a respirator
  2. have a fit test performed
    • qualitative fit test unless you wear a full face mask, or a type better than this
    • my favorite choice is irritant smoke, but it could also be saccharine, isoamyl acetate (banana), or Bitrex (R).
  3. get trained. Learn how to:
    • clean it
    • store it
    • know what your respirator can’t protect you from
    • choose the right cartridges
    • know when you have break through
    • fit check (different than a fit test -BTW)

Wondering how often you must update the above steps? Go here. There are more steps to having a respiratory program, but you must do these things before you start.

You must follow both. (I’ve mentioned this before)

OSHA’s rules are very detailed and apply to any amount of lead in paint (even less than 0.5%) if you are disturbing it. The only time OSHA rules do not apply is:

  • if you are working as a sole-proprietor (no employees), or
  • if you are in some other country.

EPA’s rules are just a start. They apply to any residential facility where there are kids under the age of 6. OSHA’s rules are much more comprehensive and protective. (in some instances, overkill)

To EPA’s credit, they have done a great job of marketing and letting contractors know they insist on compliance. OSHA, on the other hand, only inspects 2% of businesses/year and does virtually no marketing. The chances of OSHA showing up on any given jobsite, is nearly 0%.

OSHA’s rules are very complete and comprehensive. You WILL need air monitoring, blood monitoring, PPE, change areas, water/sanitation, and training. The worst thing you can do is NOT follow the OSHA rules, find overexposures, and then try to “make up” for it. From my experience this scenario is a bad place to be, and happens all the time.

« Previous PageNext Page »