industrial hygienist


Reviewing a material safety data sheet (MSDS), or soon to be called a SDS (safety data sheet), can be a useful skill. Most times the product is straightforward and gives you what you need. However, there are somethings to watch for and areas to focus to make your reviewing skills better.

To start,  make sure you have the right SDS. Match the product with the form. If is is not exactly right, find the right one. It must list the model/product name & manufacturer.

Below are some suggestions:SDS

  • What is the date of the SDS?
    • is it the most recent?
    • when was it last updated?
  • Look at section 2/3 (Hazardous components) VERY carefully.
    • google the CAS# and find the name (they sometimes hide the true-name)
    • look at the % of each component
    • what is the listed exposure limit? Is it correct? What about other recommended limits?
    • remember the hazard is only listed in this area if it is greater than 1% of the total
  • Look through each section mindful of how you will be using the product.
    • for example: if you are going to be burning the product, usually the SDS will not address these types of concerns/exposures
    • what are the required PPE during “regular use”
    • what happens if you use this product in a confined area?
    • does the manufacturer recommend air monitoring? when?
  • Familiarize yourself with the emergency procedures
    • what if it spills?
    • disposal?
    • what can cause exposure? inhalation? skin?
  • Look at the other sections with a inquisitive eye
    • do they list other chemicals, which are NOT included in the product section? why?
    • do they mention Proposition 65?
  • Finally,
    • post/make available a copy wherever it’s needed
    • make sure you know the product

It is a mixed-bag when it comes to the quality of SDS from a manufacturer. Some of them will work with you, others are a total-pain. Remember it is YOUR RIGHT to know about the products you use. If you don’t feel comfortable with the information they’ve given you, call them. OR, go find another product.

Many times an IH is called upon to determine the cause of a person’s ailing symptoms. For example, an employee might complain of congestion, irritability, bloody nose, etc. Someone has decided it might be from their exposure at work.homer sick

The practice of industrial hygiene is difficult to apply to an individual. What I mean is, this field of study was developed due to serious health concerns over a population of people at work. This is essentially how science works, you take a population, study it, find the differences, then make conclusions.

Trouble occurs when you try this backwards. If the same person (as example above) complains of congestion, irritability, bloody nose- can we assume they must have exposure to lead dust? Not usually. We must obtain other clues.

What industrial hygienists try to do in these instances is rule-out the possible over-exposures. Sometimes we can measure for chemical exposures to see if it might be of concern. But even then, it’s not fool proof. Below are a few issues which make it complicated.

  • exposure at work? job? extracurricular activities? home?
  • person might have autoimmune disease and gets sick easier
  • sampling is not feasible
  • sampling is somehow screwed up (by IH, lab, mail carrier)
  • exposure is through food, clothing, etc.

Even with these fallacies, there are things an individual can do to narrow down their ailments:

  • create a log. time, type of symptoms, pain scale, others experience/smell, food eaten
  • change things and see if it improves/makes it worse
  • research – but do it right. Look at the items you use, check the SDS

 

The Oregon GOSH (Govener’s Occupational Safety & Health) Conference is coming March 4-7, 2013. This is a great opportunity to get some information, education, and networking.

My suggestion is to attend the Tuesday and Wednesday sessions and cram-in as much as you are able. My break-out course is hidden well in the schedule, and will be easy to miss due to the other great sessions going at the same time. But, this is why I put a lot of my information on this website!

GOSH2013-SpeakerBdg

Hope to see you there.

 

 

If you have a building built pre 1985 (I know this date can be different, but I’m playing it safe) before bidding a project you need to have an asbestos survey performed, called a building inspection.danger asbestos Honestly, they usually aren’t done before bidding. SOMETIMES, they’re performed before starting the work (not good).

How do you find a good building inspector? …Google?, Yellow pages (who does that anymore?) Abatement contractor?

Whomever you hire, make sure they have a current AHERA Building Inspector Certificate. This is a Federal program maintained by TSCA Title II EPA AHERA/ASHARA Model Accreditation Program. This is your only recourse if something goes wrong. It doesn’t matter if have have a PhD, CIH, ROH, CSP and MBA, they MUST have a current AHERA Building Inspector Certificate.

Here are some things to consider:

  • Does the Building Inspector have a current certificate?
  • Will they sample for asbestos?
  • Which lab will they use for analysis? Their own? (not always a bad thing)
  • Which areas are they unable to access in the building?
  • Will they check for leaded paint?
  • Will they take pictures?
  • How long till you will get the results & report?
  • Will they write a report?
  • Are they capable of performing air monitoring? (worth asking, but not a deal-breaker)
  • Will they look back at previous records / management plans?
  • Cost?

Good luck in your search. As most things, a good referral from a friend is probably a great starting spot.

Many construction companies have a multi gas meter (s). Here is my word of caution: if you have one, know how to use it.

I bet if you’re reading this post, you do know how. However, do your employees?multi meter

This type of training is SO critical. Below are some common mistakes I’ve seen from construction companies using these types of equipment:

  • Let someone else (a GC, or subcontractor) tell you if it’s ok to enter a confined space (or hazardous one).
    • = do you own monitoring, & use your own equipment!
  • Use someone else’s multi gas meter.
    • =do NOT use someone’s meter unless you 1. know the machine and 2. are able to calibrate and see the documentation. Would you send your employees to work in an area you think there might be a deadly hazard? Treat the 4-gas meter like it is your only available tool.
  • Not performing a precalibration and bump test before using the gas meter.
    • = ALWAYS perform a bump test (not just zero-out)
  • Not knowing which sensors are inside the machine (and what they mean).
    • =train your employees on when/why it alarms. CO is not CO2.
  • Blame the machine if it alarms
    • =the machine is alarming for a reason. You either screwed it up, or something is going on. Figure it out. I had a project where the handheld radios were interfering with the multi gas meter. It took us 2 days to figure this out. Luckily no one was so desperate to work they ignored the alarm. On another project, employees were telling me it was ok to work while the alarm was sounding off. Their response was that, “it always goes off for CO, but we aren’t worried”. Yikes! I was.
  • Not knowing what the hazards are
    • =you must know what you are measuring for. If you have isocyanates inside the confined space, the multi gas meter is probably not going to give you adequate warning.- if any. Just like wearing the right type of filter cartridge on your respirator, know the hazard you are measuring.

The new global harmonization system (GHS) is officially adopted by OSHA. Each state run program is rolling out their acceptance of the new changes. Where I live, we have until December 2013 to train employees in this new type of hazard communication.

Honestly, I’m NOT too EXCITED about it. But, I’m trying to have a good attitude. Below are some good things which may occur:

  • Raise the level of awareness of hazardous materials & their toxicity
  • Train employees (hopefully, retrain) on how to handle chemicals
  • More training = less citations. (?) OSHA’s top ten citations include #3 – hazard communication. Maybe people will actually do the training?! (my guess is that there will be more citations)
  • Consistent information worldwide.  All UN countries should have the same format. (this might take years)
  • Proprietary information will be more visible on the SDS. In the new rules, manufacturers are required to list the % of their proprietary ingredients.
  • Pictograms! They’re so cool. My favorite is the exploding person.
  • Maybe this is my favorite?!: Manufacturers will have to look again at their products and classify them according to the physical & health criteria. Nowadays with more relevant information from worldwide occupational exposure limits, it might help make employers aware of the hazards.
    • This might help OSHA enforce newer exposure limits (other than the 1978 AGCIH TLVs).

How do you plan on training your employees? If you need help, contact me here.

 

 

Looking back at my lead in construction posts, I realized I did an inadequate job of summarizing why construction activities are dangerous when working with lead.

If you work in construction, here’s are the quick points as to why you should be concerned about lead.

  • There has been A LOT of lead added to paint over the years. (it can vary 0.01% to upwards of 20%, and there’s no way to tell by looking)
  • The activities we do in construction disturb this paint (some worse than others)
  • You can be exposed to paint by inhaling it (if it is airborne), and if you happen to get it on your hands and you eat it (by transfer).
  • The real concern is kids. (your kids, the kids who might be there after you’re gone, AND, the kids unborn (lead exposure can go from mom to baby)

The solution is simple (and, of course, more complicated as you dig in):

  • test the paint to see if there’s lead in it
  • if you disturb it, follow the rules (OSHA, EPA, HUD, City, etc.)
  • train your employees (and measure the lead in their blood)
  • prevent the dust from going everywhere (containment)
  • measure the air to see if you are really screwing it up, or doing a good job.
  • finally clean up. (the area, you, your hands, the perimeter) and dispose properly

You probably already knew this. Risk changes over time.

As we start to measure, and value, loss we immediately want to minimize it. However, it’s an unobtainable goal. “Zero losses”. Really? It’s not actually possible, you know (at least in the long term).

Look at this graph of the number of deaths in the US over the years due to silica. In 1968 we had approximately 1,000 deaths. Now, in the year 2005, we are less than 200. Yet, OSHA wants us to lower the exposure limit.  (I am personally not opposed to it – but I am open to debate about it, really)

Our world is becoming smaller. But, you already knew this, too.

To give an example, look at what happened in Bangladesh on November 24/25, 2012. Meanwhile in the US, we were watching football and eating leftover turkey.  Over 100 people died due to safety concerns that turned into a fire. This country is going through what the US experienced pre-1970. Other countries have similar problems.

I suppose living in the US is a yet another reason for thanksgiving. Yes…, But.  What can you do to make the biggest impact? I don’t have the answer, but, I am open to suggestions.

 

People who work in industrial hygiene try NOT to admit fault. There are reasons;  legal implications, credibility, and of course, pride. Since this blog is about being transparent, I will confess I made a huge mistake. My mistake wasn’t disastrous, but it could have been.

Background:

Employees were using a hudson sprayer (pump style) to apply a liquid waterproofing material. Air monitoring was performed and found to be 50% of the OELs. However, given the environmental conditions, and different areas they would need to access, I recommended they wear 1/2 face respirators. The hazard was isopropyl alcohol and a 1/2 face respirator with organic vapor cartridges was sufficient, with goggles & protective clothing.

However. It wasn’t isopropyl alcohol….it was methyl alcohol (methanol). And, there is a HUGE difference. Organic vapor cartridges (filters) provide NO protection to methanol. I should have recommended supplied air respirators.

I feel terrible, and I apologized.

“Success does not consist in never making mistakes but in never making the same one a second time” – George Bernard Shaw

 

When clients ask me to assist in choosing a product, I try to recommend a product with the least dangerous chemicals in it. I understand this isn’t always possible. However, I try to emphasize the worst case health scenarios and leave it up to the company to decide how to proceed. There are reasons to use a hazardous (to your health) product.

However, here are some considerations when choosing a hazardous product:

  • more hazard vs less cost
  • more hazard vs less time actually using product
  • more hazard vs cost of PPE
  • more hazard vs what the spec says
  • more hazard vs different hazard
  • more hazard vs terrible health effect/potential
  • more hazard vs perception by others on the project (by the GC/public/subcontractors, media, neighbors)

Another issue with chemicals is the names and nomenclature. There are so many different names, common names, chemical names, and sub names of products – it gets confusing.

One solution called, ChemHat.org, offers a unique way of considering other chemicals. Plug in the CAS# (Chemical Abstract Number) or the name, and it gives you some ideas.

Another alternative in choosing the best product is to ask.

  • Ask your industrial hygienist if this product is safe and/or are there concerns?
  • Ask the GC if this is the only product that can be used
  • Ask the architect if there are alternatives that are equally effective
  • Ask the manufacturer if they have comparable products without the XXX hazard

« Previous PageNext Page »