Federal OSHA


For better, or worse, the silica rule has been delayed, again. This delay is for an extension of the public comment period, which goes until December 12, 2013. Public hearings are set to begin on March 4, 2014.

Find OSHA here, with links to my previous post. A NPR story from February, 2013.

My views on this rule haven’t changed much: It’s still a mixed-bag. There are still overexposures to silica (see my pictures from the last 3 weeks). However, will the new rule change the behavior?

  • Overexposures are still happeningsilica street2
  • Silica deaths have decreased over the past (without the new rule)
  • Will the small employers (the ones who typically offend the most) comply? Or just wait to be cited?

But, my overwhelming thought is this:

  • Any new rule will generate “noise” for the subject of silica. And, that’s a good-thing.
  • This will drive:
    • compliance
    • changes
    • innovation
    • discussions
    • awareness

silica street1

If you live in the United States, you have less than one month to train your employees on the new Hazard Communication standard (1910.1200(h) & 1926.59), which should include information about the new types of Safety Data Sheets (formerly known as MSDS) and the adaptation with the Global Harmonization System (GHS). December 1, 2013 is the enforcement start date for OSHA. Don’t make this complicated, it is straightforward. Here’s what you should do:

  • Train employees in hazard communication (simply: so they know the hazards they are working with)beer
  • Document your training (in case of an OSHA inspection)
  • Show them a sample Safety Data Sheet (SDS), compared with the old MSDS
  • Explain that the new SDS will not be available immediately, but will roll-out over a few years (or more)

*Please note the “Beer” hazard warning on the right is not GHS compliant. 

For Help:

It’s sad to say, but many construction companies have not yet started a formal hearing conservation program. Their solution is to purchase the best earplugs, for the lowest cost, and give them away like candy.

As I’ve mentioned before: Sometimes OSHA’s rules are protective (meaning: you will be safe) and other times they are really not on par with the health research. Hearing loss and OSHA’s method of measuring noise are NOT protective to employee health (your hearing). For the best method of measuring noise, look to the recommended guidelines of the ACGIH. In order to get the exact parameters, you must purchase their Guide to Occupational Exposure Values (TLVs) booklet. It hasn’t changed (at least for noise) for a few years, but it is still the most up to date on health for your hearing. Here’s a summary of some differences:

  • Exchange rate (how noise doubles and is averaged over time)
    • OSHA uses 5, ACGIH uses 3 >>which means noise doubles every 5, or 3 dB increase
    • this makes a BIG difference in your accumulated average noise level (TWA).
  • Exposure Limit, or Criterion Level
    • OSHA says 90 dBA, ACGIH says 85 dBA
    • Doesn’t seem too different (-5), but remember noise is logarithmic and it’s measured different by OSHA & the ACGIH

NIOSH also has some guidelines, which are very similar to the ACGIH.NIOSH noise

There are some strong benefits to having a hearing conservation program. Here are some examples and suggestions for bettering your own program.

If you have worked in construction for any period of time, you know how loud it can be, and how much exposure is out there. Don’t assume working in this industry that hearing loss will to happen to you. Do something about it. Here’s a presentation from CDC/NIOSH a few years back on how to start.

If you haven’t heard, Federal OSHA is proposing to reduce the airborne silica permissible exposure limit (PEL) to 50 µg/m³. It is difficult to say how much lower this new rule will be, since the current standard relies on a calculated formula to obtain the exposure limit. However, to make this easier, let’s just say it’s a 50% reduction in the PEL. This limit is the same at the NIOSH Recommended Limit and above the ACGIH Threshold Value of 25 µg/m³. Before I offer my opinion, you can state yours to OSHA here, and I’d recommend you do.

 

OSHA helps

Benefits:

  • Increase awareness by everyone (any news is good news for silica awareness)
  • Further protect employees from overexposures
  • Update the health standards. The original rule was from the 1970s.
  • New products for the industry will be created to control silica, like this.
  • Pretask planning (JSA, JHA) will become more common
  • Consultant hygienists will get more $ to: train, air monitor, etc.
  • Alternatives to sampling. This is written in the proposed rule.
    • Rather than air sampling, you can choose to “over protect” and assure employees have adequate PPE
    • This is great for short duration tasks where exposure monitoring is prohibitive (see Table 1. below from OSHA’s Fact Sheet)

OSHA lead table 1

 

Weakness:

  • Employers will spend additional money:
    • on controls for silica
    • on labor during the activities
    • on consultants to verify you’re below the PEL
  • OSHA will cite you easier
    • (my guess) is compliance officers will cite you for failure to implement controls, rather than measuring the airborne dust and finding overexposure
    • driveby citations. Look at some of my “caught on cameraoverexposures. It is easy to see why this will be easy for OSHA to cite.
  • More confusion
    • remember how you felt when you started working with leaded paint? Picture that again.
    • smaller contractors might be confused with the changes
  • I’ve heard: the airborne levels trying to be achieved are so low, they are at the laboratory detection limits. (this is a bit beyond me, honestly, but it has to do with chemistry & analytical methods)

Overall, I think lowering the limit will reduce employee overexposures to silica. The increase in awareness across the US will bring more attention to the danger. Contractor employers who are doing absolutely nothing to control silica will get caught, punished, and hopefully change. For good-contractors out there, this will make it easier to explain to your subcontractors who are a little behind. I can see many contractors using Table 1 as a guide to easily protect employees on short tasks with high silica exposures.

Your thoughts? I’d love to hear them. Here is a NY Times Article perspective.

Chromium in it’s elevated valence state, called Chromium 6, or hexavalent chromium is a known carcinogen and sensitizer. From a toxicological point of view, it has a really interesting exposure to disease path.

I’ve mentioned it before, but recently NIOSH reduced their suggested limit from 1.0 µg/m³ to 0.2 µg/m³ (80% reduction for you math wiz’es).  They base this on eye & skin irritation, respiratory damage & lung cancer. Yikes.

OSHA has listed their exposure limits, along with other’s recommended limits here.

The take-away from this reduction is the serious nature of Chromium 6. hex chrome cleaningIf you are dealing with this hazard, you should take more than just a little precaution. Even if your prior air monitoring data is below the Action & Exposure Limit, continue  to document and verify your employees are well below the regulatory & recommended limits. As you know, hexavalent chromium is a skin hazard and can be absorbed easily into your body. I would also suggest performing wipe samples (area & skin) & decontamination in areas where there is work activity with hexavalent chromium.

For most construction companies, investigate these areas:

  • welding (any stainless steel?) See this earllier post, also here.
    • And, OSHA has a new Fact sheet on welding & hexavalent chromium here.
    • Washington’s OSHA (L&I) has a great page on the hazards during welding here, including training videos. (so cool!)
  • hardfacing on equipment. See earlier post.
  • Bridge painting – (or painting with chromates) OSHA’s new safety bulletin is here.
  • Electroplating – OSHA’s safety bulletin is here.
  • Anytime you heat, or work with chromate painted surfaces.
  • Portland cement when working with it wet and on your skin. NIOSH has some information here. hint: Try adding ferrous sulfate to lower the Cr6.

And, if you don’t work in construction, but live in Garfield, NJ, you might have to pull your toenails out to prove you aren’t exposed to hexavalent chromium.

This type of potential exposure usually doesn’t cross my mind. Luckily, the specifications in the construction project (and the obvious towers nearby), alerted us to the hazard.

If employees are working near areas of potential high electromagnetic (EM) activity, you should do something (see below). High EM potential areas are power lines, cellular towers, TV/Radio broadcast sites, etc. We have all heard the dangers of living under high voltage power lines, and this is essentially the same concern: Non-ionizing radiation.

The FCC has a guidance document OET-65 (radio frequency) which has some recommended limits, called maximum permissible exposures (MPE). These limits vary depending on the frequency range and how close/what type of work you are doing nearby. OSHA (1910.97) has some guidance (based upon an old ANSI standard) and the ACGIH also has recommended limits. New research is ongoing due to the increased use, and the future demand, of cell phones. The clearest guidance is from IEEE (C95 radio frequency). They provide recommendations and a sample plan. But, to summarize:

  • look for the source (s) of the radiation (sometimes it’s not obvious)
  • take measurements (might be difficult, unless you have access to a field intensity meter) Ask the FCC?
  • determine risk potential
  • make a plan
    • develop controls – time & distance are easiest radio tower
    • consider off-hours/ shut down of towers (in extreme cases)
  • train
  • consider:
    • cranes, large pieces of equipment that may resonate with a certain frequency
    • heat from stored energy
    • nondescript symptoms, which is usually the first sign of a problem

This is a somewhat new field (no pun). But, remember when power lines, cell towers, and tv/radio stations were installed. – The goal wasn’t to keep these away from people, it was to bring them closer. How close should we get? I’d love to hear if anyone has been dealing with this a lot in construction.

From what I have seen, there are not a large amount of formaldehyde exposures in construction. However, there is A LOT of formaldehyde used in construction materials. Formaldehyde can be dangerous at levels undetectable by your nose. And, the symptoms of exposure are nondescript (irritant & tingling of eyes, nose, respiratory tract).

Here are some products that may contain trace (or more) amounts of formaldehyde:

  • resins in plywood, MDF, CDX, particle board/fiber board
  • garage doors
  • drywall
  • roofing
  • glues / mastics
  • paint/coatings
  • carpets
  • insulation (spray in and batting)

I believe the reason we do not see high exposures is due to the limited duration of exposure, and the open-aired nature during the construction. Some exceptions are warehouses with large storage areas of particle board/MDF. (I have found exposures in these areas)

The OSHA exposure limit for formaldehyde is 0.75 ppm (action limit of 0.5 ppm, and short term limit of 2 ppm). However, this may not be low enough, based upon other standards (ACGIH says 0.3 ppm, NIOSH 0.1 ppm)

Another major issue with this hazard in construction is once the space is occupied.

  • Once construction is done, the space may be sealed up, heated, and additional curing can occur.
  • This may release more formaldehyde, and also NOT allow as much to escape (by dilution ventilation).
  • Compounding this issue are the type of occupants in the building. Are there children, non-working adults, immunocompromised individuals, sick, or elderly occupying this space? The OSHA standards are NOT protective for these types of people.

I do not forsee this type of sign being posted immediately after new construction.

formaldehydeOn the plus side, someone has discovered that plants may help reduce formaldehyde & VOC levels in homes. Horticulture Science Kwang Jim Kim, et.al

 

The new global harmonization system (GHS) is officially adopted by OSHA. Each state run program is rolling out their acceptance of the new changes. Where I live, we have until December 2013 to train employees in this new type of hazard communication.

Honestly, I’m NOT too EXCITED about it. But, I’m trying to have a good attitude. Below are some good things which may occur:

  • Raise the level of awareness of hazardous materials & their toxicity
  • Train employees (hopefully, retrain) on how to handle chemicals
  • More training = less citations. (?) OSHA’s top ten citations include #3 – hazard communication. Maybe people will actually do the training?! (my guess is that there will be more citations)
  • Consistent information worldwide.  All UN countries should have the same format. (this might take years)
  • Proprietary information will be more visible on the SDS. In the new rules, manufacturers are required to list the % of their proprietary ingredients.
  • Pictograms! They’re so cool. My favorite is the exploding person.
  • Maybe this is my favorite?!: Manufacturers will have to look again at their products and classify them according to the physical & health criteria. Nowadays with more relevant information from worldwide occupational exposure limits, it might help make employers aware of the hazards.
    • This might help OSHA enforce newer exposure limits (other than the 1978 AGCIH TLVs).

How do you plan on training your employees? If you need help, contact me here.

 

 

You probably already knew this. Risk changes over time.

As we start to measure, and value, loss we immediately want to minimize it. However, it’s an unobtainable goal. “Zero losses”. Really? It’s not actually possible, you know (at least in the long term).

Look at this graph of the number of deaths in the US over the years due to silica. In 1968 we had approximately 1,000 deaths. Now, in the year 2005, we are less than 200. Yet, OSHA wants us to lower the exposure limit.  (I am personally not opposed to it – but I am open to debate about it, really)

Our world is becoming smaller. But, you already knew this, too.

To give an example, look at what happened in Bangladesh on November 24/25, 2012. Meanwhile in the US, we were watching football and eating leftover turkey.  Over 100 people died due to safety concerns that turned into a fire. This country is going through what the US experienced pre-1970. Other countries have similar problems.

I suppose living in the US is a yet another reason for thanksgiving. Yes…, But.  What can you do to make the biggest impact? I don’t have the answer, but, I am open to suggestions.

 

When training people who work around asbestos I usually discuss the word “disturbance” for a LONG time. The reason is simple. If you avoid “disturbing” it, you avoid most of the health issues.

As most people are aware, asbestos is found in many types of materials. Floor tiles, popcorn ceilings, wall panels, etc.

Disturbance relates to the specific activities you perform AND the type of material the asbestos is in.

If the asbestos containing material (ACM) is non-friable, then in theory, it takes more effort to disturb the asbestos. If the material is friable, well, you need to be REALLY careful. – and in some cases, breathing can disturb it. For example, an electrician who uncovers an ancient acoustical ceiling panel and finds damaged asbestos pipe insulation laying on top of it…is probably already in trouble. He has essentially disturbed friable asbestos by merely moving the panel.

In contrast, a remodeling company installing a floating laminate hardwood over asbestos 9×9 inch tiles (without damaging them) is [probably*] NOT causing airborne releases of asbestos.

Most of the OSHA/EPA asbestos rules hinge on the matrix of the material and the activity you are performing on it. The reason is this is what makes the asbestos fiber airborne.

*the OSHA rules are very specific as to work activity, please do your due diligence.

« Previous PageNext Page »