Uncategorized


If you’ve ever won an award before, sometimes getting the award rarely equates to anything lasting (other than your increased ego). gold starHowever, in construction nowadays, safety awards are HUGE! This is especially true if you are competitive bidding (or plan to in the future). I know companies who have received jobs & project  based upon one (or several) safety awards they have won. Of course they had other things going for them, but the safety award was the tipping point.

I am talking about company safety awards, not safety awards for being safe (see my earlier post, about safety incentives).

I really don’t think it matters where you get the award.

Heck, create your own award! If you’re a GC, or a specialty contractor, why not give awards to your subcontractors or general contractors if they do an amazing safety work, or provide innovation? Print off your own certificates. Or, at the end of your project, ask your owner/GC if they will recommend and/or give you an award for the safe work you’ve performed.

Here’s an example of a construction website’s awards: Russell, James (no connections). Here’s a similar article from EHS Today.

 

On one hand it makes perfect sense. If you work safely, over time, this is something that should be rewarded. Many, many companies provide a safety-incentive for no/low work place injuries.  However, there is a downside, which some people have discovered:  If you reward people for being safe, there is a possibility they won’t tell you if something isn’t safe. It’s called a reporting bias, or selective reporting.

Unfortunately this bias is exactly the opposite of what the best companies do. The best companies report every little thing (every incident). People who scrutinize the numbers can tell you for every accident that occurs, there are usually 100 little incidents which occurred prior to the accident. The reporting of incidents is the best indicator for future accidents. (aka, catch phrase: leading indicators)

A really cool example of this is Google Dengue Trends. Dengue is a mosquito-spread virus. Google looks at search words and, over time & many data points, can actually see people where the fever is spreading. An article in Science & Tech (June, 2001 Graham Smith) “Google launches Dengue Trends tool to help doctors track spread of deadly fever

So how do you motivate people to report an unsafe act?

Here are some ideas:

  • Pre task planning & post task wrap-up (downside: can be a lot of paperwork)
  • Check the first-aid safety box for what’s being used
  • Encouraging open communication
  • Spies (not my favorite)
  • Follow up on any report of near miss (by management within a certain time frame)
  • Reward the reporting of incidents
  • Make it easy, safe, convenient, rewarding, honorable, and validating

Or, maybe you should ask the opposite question: What would motivate someone NOT to tell you? In construction, it is common practice to provide a bonus at the end of a project based upon various factors. This most definitely includes profitability, but it can also include safety. If you didn’t hurt anyone on the project, you SHOULD be rewarded. (or, at least be given a pat on the back). Here’s a case of someone who really got it backwards: A former safety manager at the Shaw Group (formerly Stone & Webster Construction) falsified records.

Chromium in it’s elevated valence state, called Chromium 6, or hexavalent chromium is a known carcinogen and sensitizer. From a toxicological point of view, it has a really interesting exposure to disease path.

I’ve mentioned it before, but recently NIOSH reduced their suggested limit from 1.0 µg/m³ to 0.2 µg/m³ (80% reduction for you math wiz’es).  They base this on eye & skin irritation, respiratory damage & lung cancer. Yikes.

OSHA has listed their exposure limits, along with other’s recommended limits here.

The take-away from this reduction is the serious nature of Chromium 6. hex chrome cleaningIf you are dealing with this hazard, you should take more than just a little precaution. Even if your prior air monitoring data is below the Action & Exposure Limit, continue  to document and verify your employees are well below the regulatory & recommended limits. As you know, hexavalent chromium is a skin hazard and can be absorbed easily into your body. I would also suggest performing wipe samples (area & skin) & decontamination in areas where there is work activity with hexavalent chromium.

For most construction companies, investigate these areas:

  • welding (any stainless steel?) See this earllier post, also here.
    • And, OSHA has a new Fact sheet on welding & hexavalent chromium here.
    • Washington’s OSHA (L&I) has a great page on the hazards during welding here, including training videos. (so cool!)
  • hardfacing on equipment. See earlier post.
  • Bridge painting – (or painting with chromates) OSHA’s new safety bulletin is here.
  • Electroplating – OSHA’s safety bulletin is here.
  • Anytime you heat, or work with chromate painted surfaces.
  • Portland cement when working with it wet and on your skin. NIOSH has some information here. hint: Try adding ferrous sulfate to lower the Cr6.

And, if you don’t work in construction, but live in Garfield, NJ, you might have to pull your toenails out to prove you aren’t exposed to hexavalent chromium.

AIHA has released (2013) a white paper for guidelines on skills & competencies in silica specific to construction. It is a great outline for training your employees.

Some interesting points:

  • Respiratory protection, and their respective assigned protection factor is mentioned. (Are you wearing the right respirator?)
  • There is no mention of air sampling. Thank you. You do not need air sampling every-time, we already know it’s hazardous.
  • They emphasize control measures for silica.

Another recent publication from IRSST in Canada explains the effectiveness of controls with regard to specific tools and where exposures are found in the industry. It has a lot of information, but if you are looking for the best method to control dust with a certain tool, it would be worthwhile to read the 108 page document.

silica- IIRST graph

 

The best resource for silica is silica-safe.org. You can create a plan for controlling it here. They have a database of tools & controls. Very handy. Someday soon we may see 3D printers able to make these dust controls and adapters for us at a moments notice. Until then, pre plan your task.

So, while standing in the California jet-way waiting to board my plane, I noticed this sign. It was most likely a Proposition 65 labeling warning. However, what in the world do you do with that information? How did posting that sign change any behavior? Could I have done anything different to avoid the jet fumes?

prop65 jet

It reads, “Warning. Chemicals known to the State of California to cause cancer, birth defects and other reproductive harm are present in the jet engine exhaust fumes from jet fuel, and exhaust from equipment used to service airplanes. Sometimes these chemicals enter this jet bridge.”

In much the same way, sometimes our warning to employees is pointless. What can they do different? What is the point of telling them something if there is nothing we can do different?

The global harmonization system (GHS) is being implemented in the US by the end of 2013. By 2014 you must train your employees on the new changes to the (Material) Safety Data Sheets (SDS, now). (BTW, there are also some other things you must do).

The message I am trying to make (double irony, I know) is when you are training your employees, how do you measure the effectiveness  If they “sign in and say they were in your training”, were you effective? Here are some suggestions, which might help to measure the right thing:

  • Questions. This ___ number of the audience asked ___ questions.
  • Feedback. I received ____ # of suggestions for the next training.
  • Changes. They are going to implement ____ changes to their workplace.
  • Secondary labeling. (GHS specific, of course) While walking around the site, I noticed ____ secondary labels with the new labeling pictographs.

I admit these aren’t the-best-suggestions-ever. But, warning someone without an alternative, method to change, or way to adopt a change, is really pointless.

NIOSHNIOSH has just recommended a new exposure limit (REL) for hexavalent chromium. The new limit is 0.2 ug/m3 as an 8-hour TWA. If you remember, the OSHA PEL is 2.5 ug/m3 (8-hour TWA). SO, if you’re good at math, you can see this is A LOT lower.

The reasoning for this level is they have found a lung cancer risk (get this) EVEN AT 0.2 ug/m3. They recommend bringing airborne levels below this limit for lung exposures.

As I’ve described before, exposures are not limited to just inhalation. Dermal contact is a big concern.

If you have any hexavalent chromium at your facility, or stainless steel (welding, welding2, hardfacing, etc.) you need to do more than just air sampling. You need a comprehensive program including wipe samples, medical monitoring, etc. This may not be a specific OSHA rule for your facility.  However, these exposures are something you must manage.

 

Many times an IH is called upon to determine the cause of a person’s ailing symptoms. For example, an employee might complain of congestion, irritability, bloody nose, etc. Someone has decided it might be from their exposure at work.homer sick

The practice of industrial hygiene is difficult to apply to an individual. What I mean is, this field of study was developed due to serious health concerns over a population of people at work. This is essentially how science works, you take a population, study it, find the differences, then make conclusions.

Trouble occurs when you try this backwards. If the same person (as example above) complains of congestion, irritability, bloody nose- can we assume they must have exposure to lead dust? Not usually. We must obtain other clues.

What industrial hygienists try to do in these instances is rule-out the possible over-exposures. Sometimes we can measure for chemical exposures to see if it might be of concern. But even then, it’s not fool proof. Below are a few issues which make it complicated.

  • exposure at work? job? extracurricular activities? home?
  • person might have autoimmune disease and gets sick easier
  • sampling is not feasible
  • sampling is somehow screwed up (by IH, lab, mail carrier)
  • exposure is through food, clothing, etc.

Even with these fallacies, there are things an individual can do to narrow down their ailments:

  • create a log. time, type of symptoms, pain scale, others experience/smell, food eaten
  • change things and see if it improves/makes it worse
  • research – but do it right. Look at the items you use, check the SDS

 

The Oregon GOSH (Govener’s Occupational Safety & Health) Conference is coming March 4-7, 2013. This is a great opportunity to get some information, education, and networking.

My suggestion is to attend the Tuesday and Wednesday sessions and cram-in as much as you are able. My break-out course is hidden well in the schedule, and will be easy to miss due to the other great sessions going at the same time. But, this is why I put a lot of my information on this website!

GOSH2013-SpeakerBdg

Hope to see you there.

 

 

When training people who work around asbestos I usually discuss the word “disturbance” for a LONG time. The reason is simple. If you avoid “disturbing” it, you avoid most of the health issues.

As most people are aware, asbestos is found in many types of materials. Floor tiles, popcorn ceilings, wall panels, etc.

Disturbance relates to the specific activities you perform AND the type of material the asbestos is in.

If the asbestos containing material (ACM) is non-friable, then in theory, it takes more effort to disturb the asbestos. If the material is friable, well, you need to be REALLY careful. – and in some cases, breathing can disturb it. For example, an electrician who uncovers an ancient acoustical ceiling panel and finds damaged asbestos pipe insulation laying on top of it…is probably already in trouble. He has essentially disturbed friable asbestos by merely moving the panel.

In contrast, a remodeling company installing a floating laminate hardwood over asbestos 9×9 inch tiles (without damaging them) is [probably*] NOT causing airborne releases of asbestos.

Most of the OSHA/EPA asbestos rules hinge on the matrix of the material and the activity you are performing on it. The reason is this is what makes the asbestos fiber airborne.

*the OSHA rules are very specific as to work activity, please do your due diligence.

You must follow both. (I’ve mentioned this before)

OSHA’s rules are very detailed and apply to any amount of lead in paint (even less than 0.5%) if you are disturbing it. The only time OSHA rules do not apply is:

  • if you are working as a sole-proprietor (no employees), or
  • if you are in some other country.

EPA’s rules are just a start. They apply to any residential facility where there are kids under the age of 6. OSHA’s rules are much more comprehensive and protective. (in some instances, overkill)

To EPA’s credit, they have done a great job of marketing and letting contractors know they insist on compliance. OSHA, on the other hand, only inspects 2% of businesses/year and does virtually no marketing. The chances of OSHA showing up on any given jobsite, is nearly 0%.

OSHA’s rules are very complete and comprehensive. You WILL need air monitoring, blood monitoring, PPE, change areas, water/sanitation, and training. The worst thing you can do is NOT follow the OSHA rules, find overexposures, and then try to “make up” for it. From my experience this scenario is a bad place to be, and happens all the time.

« Previous PageNext Page »