Engineering Controls


On one hand it makes perfect sense. If you work safely, over time, this is something that should be rewarded. Many, many companies provide a safety-incentive for no/low work place injuries.  However, there is a downside, which some people have discovered:  If you reward people for being safe, there is a possibility they won’t tell you if something isn’t safe. It’s called a reporting bias, or selective reporting.

Unfortunately this bias is exactly the opposite of what the best companies do. The best companies report every little thing (every incident). People who scrutinize the numbers can tell you for every accident that occurs, there are usually 100 little incidents which occurred prior to the accident. The reporting of incidents is the best indicator for future accidents. (aka, catch phrase: leading indicators)

A really cool example of this is Google Dengue Trends. Dengue is a mosquito-spread virus. Google looks at search words and, over time & many data points, can actually see people where the fever is spreading. An article in Science & Tech (June, 2001 Graham Smith) “Google launches Dengue Trends tool to help doctors track spread of deadly fever

So how do you motivate people to report an unsafe act?

Here are some ideas:

  • Pre task planning & post task wrap-up (downside: can be a lot of paperwork)
  • Check the first-aid safety box for what’s being used
  • Encouraging open communication
  • Spies (not my favorite)
  • Follow up on any report of near miss (by management within a certain time frame)
  • Reward the reporting of incidents
  • Make it easy, safe, convenient, rewarding, honorable, and validating

Or, maybe you should ask the opposite question: What would motivate someone NOT to tell you? In construction, it is common practice to provide a bonus at the end of a project based upon various factors. This most definitely includes profitability, but it can also include safety. If you didn’t hurt anyone on the project, you SHOULD be rewarded. (or, at least be given a pat on the back). Here’s a case of someone who really got it backwards: A former safety manager at the Shaw Group (formerly Stone & Webster Construction) falsified records.

Chromium in it’s elevated valence state, called Chromium 6, or hexavalent chromium is a known carcinogen and sensitizer. From a toxicological point of view, it has a really interesting exposure to disease path.

I’ve mentioned it before, but recently NIOSH reduced their suggested limit from 1.0 µg/m³ to 0.2 µg/m³ (80% reduction for you math wiz’es).  They base this on eye & skin irritation, respiratory damage & lung cancer. Yikes.

OSHA has listed their exposure limits, along with other’s recommended limits here.

The take-away from this reduction is the serious nature of Chromium 6. hex chrome cleaningIf you are dealing with this hazard, you should take more than just a little precaution. Even if your prior air monitoring data is below the Action & Exposure Limit, continue  to document and verify your employees are well below the regulatory & recommended limits. As you know, hexavalent chromium is a skin hazard and can be absorbed easily into your body. I would also suggest performing wipe samples (area & skin) & decontamination in areas where there is work activity with hexavalent chromium.

For most construction companies, investigate these areas:

  • welding (any stainless steel?) See this earllier post, also here.
    • And, OSHA has a new Fact sheet on welding & hexavalent chromium here.
    • Washington’s OSHA (L&I) has a great page on the hazards during welding here, including training videos. (so cool!)
  • hardfacing on equipment. See earlier post.
  • Bridge painting – (or painting with chromates) OSHA’s new safety bulletin is here.
  • Electroplating – OSHA’s safety bulletin is here.
  • Anytime you heat, or work with chromate painted surfaces.
  • Portland cement when working with it wet and on your skin. NIOSH has some information here. hint: Try adding ferrous sulfate to lower the Cr6.

And, if you don’t work in construction, but live in Garfield, NJ, you might have to pull your toenails out to prove you aren’t exposed to hexavalent chromium.

AIHA has released (2013) a white paper for guidelines on skills & competencies in silica specific to construction. It is a great outline for training your employees.

Some interesting points:

  • Respiratory protection, and their respective assigned protection factor is mentioned. (Are you wearing the right respirator?)
  • There is no mention of air sampling. Thank you. You do not need air sampling every-time, we already know it’s hazardous.
  • They emphasize control measures for silica.

Another recent publication from IRSST in Canada explains the effectiveness of controls with regard to specific tools and where exposures are found in the industry. It has a lot of information, but if you are looking for the best method to control dust with a certain tool, it would be worthwhile to read the 108 page document.

silica- IIRST graph

 

The best resource for silica is silica-safe.org. You can create a plan for controlling it here. They have a database of tools & controls. Very handy. Someday soon we may see 3D printers able to make these dust controls and adapters for us at a moments notice. Until then, pre plan your task.

I had the opportunity to attend a construction safety award presentation and listen to various commercial construction companies (GC, and Specialty Contractors) explain why their company deserved an award. Owners, CEOs, Safety Directors, and Employees spoke about their company. Their stories were amazing. Below I have listed some of the ideas that inspired me. They may not, at first glace, appear to be amazing. However, consider when the CEO tells a story that makes him cry, or when a superintendent explains how he is part of a family,…. it makes the words ring different.

Here are my takeaways:

  • Safety really starts at the top. It’s not a priority, it’s a core value. Check out the Injury Free Forum (IIF).
    • This is basically a club/meeting for CEOs to gather and talk about how to prevent injuries. It’s ‘almost’ an invite-only type of event. But, if you’re a CEO/President you should think about it. (helps if you live in the NE part of the US)
    • Here are some companies participating, Gilbane, Gilbane video (yep, it’s good), JMJ Associates, Baker Concrete video
  • During initial employee orientation;
    • one company has each employee write a letter to their family saying (apologizing) why they are gone/dead. This really emphasizes to each individual why they need to work safe.
    • the CEO gives each new employee his business card and tell them to call him directly if they are asked to do something unsafe.
    • each new employee is assigned a mentor (the time period varies from 2 weeks to 1 month) to watch them work safely.
  • Each employee has the right to stop work due to safety. If they do it: the CEO/President writes them a personal thank you note.
  • Make each near miss a incident, but do NOT have a lot of paperwork, just simple documentation for future learning.
  • Have a innovative idea challenge at your company for good safety ideas.
    • Put a bar code on infrequently used tools. Link to a short video which explains how to use it.
    • Zip tie PPE onto the tools upon checkout.
  • Send your “Safety Incident” or “Safety Summary” to their home. Ask them to put it on their fridge. Then, run a contest. Randomly find a name & call that employee to see if they can tell you what the safety topic is. Give a prize. Repeat.
  • Look at the design. A large GC mandated that every hole in their project have safety netting installed during the concrete pour. …and they did it!
  • An electrical firm uses no knives. None. Think that helps cut down on injuries? (pun intended)

The goal is zero injuries. So, what happens after zero injuries? How about sending your spouse to work…and they come home healthier! It’s not far away for some companies, Health & Wellness programs are already being implemented. For whom are you working? Here’s one of my reasons:

live work

I’m easily impressed with welding and welders. Welding looks so simple, yet hard, dangerous and permanent.

When interviewing your welder, here are some questions to ask:weld1

  • What type of welding are you doing?
  • What type of metal do you weld on? (mild steel, stainless, galvanized)
  • Is there any coating on the metal?
  • What type of flux is used?
  • Where do you weld?, and then, “Where else?”
  • Is there any ventilation in the area you weld?
  • Are there any flammables in the area?
  • Do you wear any PPE when welding? (ear plugs, respirator, leather)
  • When do you use fall protection?
  • Do you have & use welding shields?

What makes welding so difficult is the number of variables involved. The welding variables can change by the minute. Educate your employees on these dangers.

After the above questions, if the employee is agreeable, I ask some additional questions. These are the ones that provoke the best stories:

  • What is the strangest things you’ve welded?
  • Have you ever welding in a really small (confined) area?
  • Have you ever welded with exotic metals? fluxes?
  • What’s the worst thing you’ve welded on?
  • Have you ever gotten sick from welding?

There are many, many more questions to be asked depending on the answers. The authority on this subject, Michael Harris, has written an excellent book on this subject, “Welding Health and Safety“(ISBN 978-1-931504-28-7). It is available from AIHA. It is VERY detailed, and money well spent if you do welding. I have taken his short course (all day) and I learned more than I ever thought possible, and I still can’t even weld!

weld2

Since you are reading this, you probably know the answer. Everyone. But, who is everyone? It should include your CEO/Company President/COO (or similar). If not, I guarantee you aren’t working as safely as possible.

The reason:  The person doing the work usually isn’t involved in the bidding & planning of the project.  It’s not always the President’s fault that the proper safety equipment wasn’t bought, or there are no available tie off points on the roof. (But, it might be their fault if they are willing to press forward without making changes.)

Here is one way to deal with these issues. Train the CEO (President/COO/Project Manager/Estimator) beforehand. Here’s how:

  • Make the training for them. 
    • Don’t talk about safety harnesses, or the three different types of asbestos.
    • Go over big items (where are your claims? what are similar claims for your industry?)
  • Emphasize the proper methods to control any hazard:
    • #1 engineering controls
    • #2 administrative controls
    • #3 PPE (in that order!)
  • Get them to contact you during the bidding process (not after you’ve won it). Talk about what might be dangerous work & plan for it.
  • Share a success story. Ask a superintendent to explain how they controlled a possible exposure.
    • Did they make the architect install in a tie-off point?
    • Did they ask the owner to change adhesive products to a less hazardous one?
    • Did they use an abatement contractor who performed the work well?
  • Keep it simple & short. You don’t need a lot of time, but you do need them all on the same page.

When everyone in the company has the same interest in safety, it isn’t hard to explain.

Many construction companies have a multi gas meter (s). Here is my word of caution: if you have one, know how to use it.

I bet if you’re reading this post, you do know how. However, do your employees?multi meter

This type of training is SO critical. Below are some common mistakes I’ve seen from construction companies using these types of equipment:

  • Let someone else (a GC, or subcontractor) tell you if it’s ok to enter a confined space (or hazardous one).
    • = do you own monitoring, & use your own equipment!
  • Use someone else’s multi gas meter.
    • =do NOT use someone’s meter unless you 1. know the machine and 2. are able to calibrate and see the documentation. Would you send your employees to work in an area you think there might be a deadly hazard? Treat the 4-gas meter like it is your only available tool.
  • Not performing a precalibration and bump test before using the gas meter.
    • = ALWAYS perform a bump test (not just zero-out)
  • Not knowing which sensors are inside the machine (and what they mean).
    • =train your employees on when/why it alarms. CO is not CO2.
  • Blame the machine if it alarms
    • =the machine is alarming for a reason. You either screwed it up, or something is going on. Figure it out. I had a project where the handheld radios were interfering with the multi gas meter. It took us 2 days to figure this out. Luckily no one was so desperate to work they ignored the alarm. On another project, employees were telling me it was ok to work while the alarm was sounding off. Their response was that, “it always goes off for CO, but we aren’t worried”. Yikes! I was.
  • Not knowing what the hazards are
    • =you must know what you are measuring for. If you have isocyanates inside the confined space, the multi gas meter is probably not going to give you adequate warning.- if any. Just like wearing the right type of filter cartridge on your respirator, know the hazard you are measuring.

Controlling most of these types of exposures is really simple. If you know the job- and you know it will generate airborne silica = Pre Task Plan!

I wish Superintendents would enforce their project managers, or project engineers, to make a pre-task plan for every concrete/silica producing task. Then, (please don’t stop yet), review the plan once the project starts!

Below are two examples with different outcomes:wet saw

1. Cutting concrete block.

The pretask plan called for a garden hose with attachment(s) to wet the cutting area. Everything was perfect until the water was shut off. But, they improvised and found an electric water pump with bucket and recycled the water. It was a great outcome. What if the power went out? They could have used a Hudson sprayer.

2. Grinding plaster off a brick wall.

They built an enclosure and containment. They had a negative air machine with HEPA filters. They had a vacuum with HEPA filters, tyvek, 1/2 face respirator, eye protection, etc. But, as they worked the vacuum couldn’t keep up with the amount of dust generated by the 7 inch Bosch grinder. It was really dusty. They worked like this for days. No one onsite saw them because they were in containment. Unfortunately  the project is almost over and it could have been better. A simple shroud to the grinder, like this one (no endorcement) might have controlled the dust & silica. Sure, it might have been troublesome to find the exact one, and get a vacuum attachment, and have the extra weight, and ….

 

dustless shroud

So, let’s talk to people about silica, talk about solutions, and then check to see if they’re effective.

My friend, Shelley, sent me these pictures of a city maintenance crew hanging up the Christmas decorations in town. These guys have probably been working this way for years. What will take to make them change? Administrative controls? As I’ve mentioned before, falls are the #1 killer in construction.

 

Looking back at my lead in construction posts, I realized I did an inadequate job of summarizing why construction activities are dangerous when working with lead.

If you work in construction, here’s are the quick points as to why you should be concerned about lead.

  • There has been A LOT of lead added to paint over the years. (it can vary 0.01% to upwards of 20%, and there’s no way to tell by looking)
  • The activities we do in construction disturb this paint (some worse than others)
  • You can be exposed to paint by inhaling it (if it is airborne), and if you happen to get it on your hands and you eat it (by transfer).
  • The real concern is kids. (your kids, the kids who might be there after you’re gone, AND, the kids unborn (lead exposure can go from mom to baby)

The solution is simple (and, of course, more complicated as you dig in):

  • test the paint to see if there’s lead in it
  • if you disturb it, follow the rules (OSHA, EPA, HUD, City, etc.)
  • train your employees (and measure the lead in their blood)
  • prevent the dust from going everywhere (containment)
  • measure the air to see if you are really screwing it up, or doing a good job.
  • finally clean up. (the area, you, your hands, the perimeter) and dispose properly

« Previous PageNext Page »